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Abstract: Estimating surface runoff for ungauged watershed is an important issue. The 

Soil Conservation Service Curve Number (SCS-CN) method developed from long-term 

experimental data is widely used to estimate surface runoff from gaged or ungauged 

watersheds. Many modelers have used the documented SCS-CN parameters without 

calibration, sometimes resulting in significant errors in estimating surface runoff. Several 

methods for regionalization of SCS-CN parameters were evaluated. The regionalization 

methods include: (1) average; (2) land use area weighted average; (3) hydrologic soil group 

area weighted average; (4) area combined land use and hydrologic soil group weighted 

average; (5) spatial nearest neighbor; (6) inverse distance weighted average; and (7) global 

calibration method, and model performance for each method was evaluated with application 

to 14 watersheds located in Indiana. Eight watersheds were used for calibration and six 

watersheds for validation. For the validation results, the spatial nearest neighbor method 

provided the highest average Nash-Sutcliffe (NS) value at 0.58 for six watersheds but it 

included the lowest NS value and variance of NS values of this method was the highest. 

The global calibration method provided the second highest average NS value at 0.56 with 

low variation of NS values. Although the spatial nearest neighbor method provided the 

highest average NS value, this method was not statistically different than other methods. 

However, the global calibration method was significantly different than other methods except 
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the spatial nearest neighbor method. Therefore, we conclude that the global calibration 

method is appropriate to regionalize SCS-CN parameters for ungauged watersheds. 

Keywords: calibration; shuffled complex evolution algorithm; direct runoff; global 

optimization; watershed model; curve number method 

 

1. Introduction 

Watershed modeling is one of the rational, economical, and useful approaches for water quality and 

quantity management and is widely used in planning, design, management and developing watershed 

management plans, including those for total maximum daily loads (TMDLs). The advance of computer 

hardware and software allows model frameworks to become more comprehensive, but also more 

complex [1]. A complex watershed model is generally characterized by a multitude of parameters [2]. 

Among the large number of parameters, some parameters can be obtained from measurement, but the 

measurable parameters sometimes have errors, and other parameters cannot be measured. Complex 

watershed model accuracy might be jeopardized with inappropriate default values [3]. Therefore, 

model calibration and validation are often needed, and the model calibration-validation scenario 

analysis is a traditional modeling approach for gauged watersheds. 

One of the challenges for hydrologists is to perform hydrologic analysis for ungauged  

watersheds [4]. Many researchers have attempted to solve this challenge with various watershed 

models, and Kim and Kaluarachchi [4] have documented the history of parameter estimation for 

ungauged watersheds. Early attempts to estimate runoff for ungauged watersheds employed calibrated 

parameters from nearby gauged watersheds with available streamflow [5,6]. However, it has been 

reported that model results from ungauged watersheds may have errors when basin characteristics such 

as geography, land use and soil type, are significantly different than those of gauged watersheds [7–9]. 

Recently, a common approach for estimating runoff for ungauged watersheds employs regionalized 

parameters generated by regression equations assuming model parameters have significant correlation 

with basin characteristics [4].  

The Soil Conservation Service Curve Number (SCS-CN) method [10] is widely employed in 

various hydrologic models to simulate surface runoff [3]. Since SCS-CN parameters were developed 

from long-term experimental data, the SCS-CN method estimates rough approximations of direct 

runoff because it does not include the effects of evapotranspiration and infiltration on watershed 

wetness [10,11]. To address this limitation, upper curve number values (CN III) and lower curve 

number values (CN I) were derived from average curve number values (CN II) for “wet” and “dry” 

antecedent moisture conditions [12]. Although the SCS-CN method was improved to simulate surface 

runoff by adjustments for antecedent moisture conditions, the SCS-CN parameters recommended by 

the USDA-NRCS [13] are highly dependent on field conditions or practices even for the same land use 

type and soil. Several researchers found that SCS-CN parameters sometimes need to be calibrated for 

application for direct runoff estimation [14]. Grunwald and Norton [15] reported that the simulation 

results for uncalibrated SCS-CN parameters underestimated observed surface runoff using the 
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Agricultural Nonpoint Source Pollution (AGNPS), and results for calibrated AGNPS were better than 

uncalibrated results. 

The goal of this project was to demonstrate various regionalization methods including: (1) average; 

(2) land use area weighted average; (3) hydrologic soil group area weighted average; (4) area 

combined land use and hydrologic soil group weighted average; (5) spatial nearest neighbor;  

(6) inverse distance weighted average; and (7) global calibration method using the SCE-UA technique 

for SCS-CN parameters using the Long-Term Hydrologic Impact Assessment (L-THIA) model for  

14 watersheds within Indiana. 

2. Background 

2.1. Shuffled Complex Evolution Algorithm (SCE-UA) 

The Shuffled Complex Evolution (SCE-UA) algorithm, developed in the Department of Hydrology 

and Water Resources of the University of Arizona, along with Genetic Algorithms (GA) are often used 

for automated model calibration as a global optimization technique. A number of studies have reported 

that the SCE-UA algorithm provided better results compared to GA approaches for calibrating 

watershed models [16,17].The SCE-UA method is based on a synthesis of four concepts including:  

(i) combination of deterministic and probabilistic approaches; (ii) systematic evolution of a “complex” 

of points spanning the parameter space in the direction of global improvement; (iii) competitive 

evolution; and (iv) complex shuffling. These four concepts improve its efficiency, flexibility, and 

effectiveness [18]. The descriptions of each SCE-UA step and more detailed explanations are provided 

by Duan et al. [19,20] including: (i) generating samples; (ii) ranking points; (iii) partitioning into 

complexes; (iv) evolving each complex; (v) shuffle complexes; (vi) checking convergence; and  

(vii) checking the reduction in the number of complexes. S points are sampled in parameter spaces 

randomly, criteria are calculated at each s points, and s points are ranked from the worst criteria value 

to the best criteria. The s points are partitioned into p complexes containing m points in partitioning 

into complexes. According to the competitive complex evolution, each complex is evaluated. The 

points are combined in the evolved complexes into a single sample population, the sample population 

is sorted, and the sample population is shuffled into p complexes. Convergence and the reduction in 

the number of complexes are checked. 

2.2. Overview of L-THIA 

L-THIA was developed to evaluate the long-term effects or impacts of land use change on direct 

runoff and nonpoint source pollution loading [21–25]. Since its introduction, L-THIA has continued to 

be developed with new L-THIA capabilities being introduced including L-THIA GIS that is  

integrated with ArcView GIS software and the web-based L-THIA [26]. L-THIA employs the SCS-CN 

method to estimate direct surface runoff. The SCS-CN method, determined by combination of land use 

and hydrologic soil group, was developed from observed data by the United States Department of 

Agriculture, Soil Conservation Service [10] and is widely used for simulating runoff and streamflow [3]. 

Figure 1 represents the diagram for L-THIA GIS application. The model provides watershed 

delineation as an option, and creates a SCS-CN map as a GIS grid file using land use and hydrologic 
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soil group maps. From the SCS-CN file and rainfall, the model calculates runoff depth and runoff 

volume maps using the SCS-CN method. The SCS-CN method is based on a water balance hypothesis 

that the ratio of actual retention in a watershed to the potential maximum retention is equal to the ratio 

of actual direct runoff to the potential maximum runoff [10]. Direct surface runoff from the SCS-CN 

method is expressed by: 
2( 0.2 )

( 0.8 )

P S
Q

P S

−=
+

 (1)

where, Q is direct surface runoff; P is precipitation; S is potential maximum retention after runoff 

begins. S is estimated by SCS-CN value as follows:  

1000
24.5( 10)S

CN
= −  (2)

Figure 1. Schematic diagram of Long-Term Hydrologic Impact Assessment (L-THIA) GIS application.  

 

Surface runoff is influenced by soil moisture content, and the SCS-CN method was developed to 

consider antecedent soil moisture condition (AMC) by adjusting SCS-CN value based on seasonal total 

5-days rainfall as shown Table 1 [10]. AMC is divided as AMC I for dry condition, AMC II for normal 

condition, and AMC III for wet condition. SCS-CN values for each AMC I and III are computed from 

the CN for normal conditions as follows:  
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−
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where, CNI is SCS-CN value for AMC I and CNIII for AMC III. 
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Table 1. The range of optimized Soil Conservation Service Curve Number (SCS-CN) 

values in L-THIA model. 

Combination of land use and 

hydrologic soil group 

Documented This study 

Minimum Maximum Average Minimum Maximum Multiplication factor 

Developed high 

density (Impervious 

area: 80%–100%) 

A 86 98 89 85 93 

0.97–1.03 
B 91 98 94 91 98 

C 93 98 96 92 98 

D 94 98 97 93 98 

Developed medium 

density (Impervious 

area: 50%–79%) 

A 68 85 77 74 80 

0.97–1.03 
B 79 90 85 81 88 

C 86 93 89 86 93 

D 89 94 92 88 95 

Developed low 

density (Impervious 

area: 20%–49%) 

A 51 68 51 49 53 

0.96–1.04 
B 68 79 74 71 76 

C 79 86 82 79 85 

D 84 89 86 83 90 

Developed open 

spaces 

A 39 68 54 49 58 

0.92–1.08 
B 61 79 70 64 76 

C 74 86 80 74 86 

D 80 89 85 78 91 

Cultivated crops 

A 51 77 64 59 69 

0.92–1.08 
B 67 86 77 70 83 

C 76 91 84 77 90 

D 80 94 87 80 94 

Pasture and Grasses 

A 30 68 49 45 53 

0.92–1.08 
B 58 79 69 63 74 

C 71 86 79 72 85 

D 78 89 84 77 90 

Forest 

A 30 57 44 40 47 

0.92–1.08 
B 55 73 64 59 69 

C 70 82 76 70 82 

D 77 86 82 75 88 

3. Materials and Methods 

Eight watersheds within Indiana were selected to regionalize SCS-CN method parameters and six 

watersheds within Indiana were used to validate for applicability of regionalized parameters as 

ungauged watersheds. The SCE-UA optimization method was developed by coding the SCE-UA 

version 2.2 developed in the Department of Hydrology and Water Resources of the University of 

Arizona [19] to fit the L-THIA model because it is widely used to optimize hydrologic models.  

SCS-CN values and total 5-day rainfall for antecedent moisture condition (AMC) adjustment were 

optimized through calibration. To maintain the relationship between SCS-CN values for a given land 

use and hydrologic soil groups, multiple factors for each land use type were obtained as optimized 

parameters. Therefore, calibrated SCS-CN values were obtained by multiplying the optimized factors 

and default SCS-CN values for each land use. The optimized range was identified from documented 
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values [10] to avoid searching extreme SCS-CN values and to insure that calibrated SCS-CN values 

were within reasonable ranges. For the urban area including industrial, commercial, residential, and 

developed open space, the relationship between percentage impervious area and SCS-CN values was 

developed using documented values [10] because land use data for urban area was divided by 

percentage ranges of impervious area. The equations for each hydrologic soil group follow: 
2

2

2

2

0.586 39.116 ( 1.0, 9)

0.374 60.666 ( 1.0, 9)

0.238 74.070 ( 1.0, 9)

0.175 80.402 ( 1.0, 9)

A imp

B imp

C imp

D imp

CN P R n

CN P R n

CN P R n

CN P R n

= × + = =

= × + = =

= × + = =

= × + = =

 (5)

Therefore, SCS-CN ranges for urban areas were set using Equation (5) and the impervious range for 

developed high, medium, low density area. The optimized SCS-CN values and multiple factor ranges 

used in this study are shown in Table 1. 

The total 5-day rainfall is typically used to identify soil moisture condition which shifts the soil 

from one AMC value to another, and the amount often varies with season of the year [27]. The total  

5-day rainfall for AMC adjustment was optimized directly within two times for default values, and 

Table 2 shows the default seasonal 5-day accumulated rainfall for the AMC adjustment [10]. In this 

study, starting date of growing and dormant seasons was set as 15 April and 15 October, respectively. 

Table 2. Default total 5-day antecedent rainfall for antecedent soil moisture condition 

(AMC) adjustment. 

AMC 
Total 5-day antecedent rainfall (mm) 

Dormant Season Growing Season 

I Less than 12.70 Less than 35.56 
II 12.70–27.94 35.56–53.34 
III Over 27.94 Over 53.34 

3.1. Study Watersheds and Data 

For evaluating the performance of each method for SCS-CN parameter regionalization, eight 

watersheds for calibration and six watersheds for validation as ungauged watershed were selected 

based on the absence of lakes or reservoirs in the watershed (Figure 2 and Table 3). Watersheds which 

included a lake or reservoir were excluded because the observed rainfall-runoff response for these 

watersheds is typically altered. The selected watershed areas ranged from 32.7 to 5844.1 km2. 

Calibration watersheds were selected with one or two primary land use types and validation 

watersheds were selected with mixed urbanized and mixed non-urbanized land uses. Among the 

calibration watersheds, the primary land use type in the watersheds is crop, with watersheds WD#1 to 

WD#4 containing 72%–83% crop land use. Pasture and grass areas for the eight calibration watersheds 

ranged between 1% and 17%. Forest areas were dominant for watersheds WD#6 to WD#7 with 66%–71% 

forest area. One watershed (WD#8) had urban as the primary land use with about 96% of its area 

considered urban. Among the six validation watersheds, two watersheds are mixed rural watersheds 

containing 22% cropped, 35% pastured, and 37% forested area for WD#9 and 26% cropped, 16% 
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pastured, and 42% forested area for WD#10. WD#11 is a mixed urban watershed with 5% high, 12% 

medium, and 32% low density development, and 39% developed open space. The other watersheds 

from WD#12 to 14 contain largely cropped areas (71%–73%). 

Figure 2. Study watersheds. 
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Table 3. Study Watershed Descriptions. 

Watershed 
(WD)# 

Watershed 
name 

Area 
(km2) 

Calibration 
period 

Validation 
period 

USGS 
station 

Rainfall station 
(COOPID) 

Land use (%) * 
Hyd. soil 

group (%) ** 

1 Wildcat Creek 1024.3 1996–2005  03334000 
122638, 122931, 124662, 
124667, 128784, 129905 

H: 1, M: 1, L: 4, O: 7,  
C: 80, P: 2, F: 5, W:1 

A: 1, B: 52,  
C: 47, D: 1 

2 Eagle Creek 268.8 1996–2005  03353200 129557 
H: 0, M: 0, L: 2, O: 8,  
C: 73, P: 10, F: 6, W:1 

A: 0, B: 50,  
C: 46, D: 3 

3 
Big Raccoon 

Creek 
364.7 1996–2005  03340800 121873 

H: 0, M: 0, L: 1, O: 5,  
C: 83, P: 5, F: 7, W:0 

A: 0, B: 49,  
C: 51, D: 1 

4 
East Fork 

White River 
5844.1 1996–2005  03365500 

121326, 121747, 123527, 
123547, 124272, 124642, 
124832, 125613, 125923, 
126056, 126164, 126437, 

127646, 127999 

H: 0, M: 1, L: 2, O: 6,  
C: 72, P: 5, F: 13, W:1 

A: 0, B: 51,  
C: 47, D: 2 

5 Big Creek 269.2 1996–2005  03378550 127083 
H: 0, M: 0, L: 1, O: 7,  
C: 81, P: 1, F: 9, W:0 

A: 0, B: 54,  
C: 45, D: 1 

6 
South Fork 

Patoka River 
110.7 1999–2004  03376350 128442 

H: 0, M: 0, L: 0, O: 3,  
C: 21, P: 6, F: 66, W:3 

A: 0, B: 38,  
C: 57, D: 5 

7 
Middle Fork 

Anderson 
102.8 1996–2005  03303300 127724 

H: 0, M: 0, L: 0, O: 4,  
C: 6, P: 17, F: 71, W:1 

A: 0, B: 61,  
C: 36, D: 3 

8 
Little Eagle 

Creek 
70.1 1996–2005  03353600 124249 

H: 10, M: 20, L: 38, O: 27, 
C: 0, P: 0, F: 4, W:1 

A: 0, B: 33,  
C: 39, D: 28 

9 Blue River 730.9  1996–2005 03302800 126697, 127755 
H: 0, M: 0, L: 0, O: 5,  

C: 22, P: 35, F: 37, W: 0 
A: 0, B: 66,  
C: 34, D: 0 

10 
Little 

Calument 
River 

165.9  1996–2005 04094000 124244, 124837, 128999 
H: 0, M: 2, L: 6, O: 5,  

C: 26, P: 16, F: 42, W: 3 
A: 3, B: 57,  
C: 31, D: 9 

11 Crooked Creek 46.6  1996–2005 03351310 124249 
H: 5, M: 12, L: 32, O: 39, 

C: 4, P: 3, F: 6, W:1 
A: 0, B: 54,  
C: 45, D: 1 

  



Water 2014, 6 1347 

 

 

Table 3. Cont. 

Watershed 
(WD)# 

Watershed 
name 

Area 
(km2) 

Calibration 
period 

Validation 
period 

USGS 
station 

Rainfall station 
(COOPID) 

Land use (%) * 
Hyd. soil 

group (%) ** 

12 Deer Creek 623.7  1996–2005 03358000 
121647, 122041, 125407, 

128290 
H: 0, M: 0, L: 1, O: 5,  
C: 71, P: 9, F: 14, W:0 

A: 0, B: 47,  
C: 49, D: 3 

13 Ell River 2042.5  1994–2004 03328500 
121739, 124181, 125117, 
126864, 127482, 129138, 

129243 

H: 0, M: 0, L: 1, O: 6,  
C: 77, P: 5, F: 10, W: 2 

A: 4, B: 37,  
C: 58, D: 2 

14 White River 568.0  1996–2005 03347000 
121229, 122825, 126023, 
126164, 127398, 129678 

H: 0, M: 1, L: 3, O: 7,  
C: 73, P: 6, F: 8, W: 2 

A: 0, B: 35,  
C: 62, D: 2 

Notes: * H is developed high density; M is developed medium density; L is developed low density; O is developed open space; C is crop; P is pasture and grass;  

F is forest; and W is water; Bold and underline indicates the dominant land use type; ** A means high infiltration (low runoff); B means moderate infiltration 

(moderate runoff); C means low infiltration (moderate to high runoff); and D means very low infiltration (high runoff); Bold and underlined indicates dominant 

hydrologic soil group.  
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The spatial distribution of hydrologic soil groups was obtained from the State Soil Survey 

Geographic (SSURGO) database obtained from the USDA Natural Resources Conservation Service 

(USDA-NRCS) website [28]. National Land Cover Data (NLCD 2001) for spatial distribution of land 

use type was downloaded from the Multi-Resolution Land Characteristics Consortium web site [29]. 

Land use was divided into eight categories: water, developed high density, developed medium density, 

developed low density, crop, pasture and grass, forest, and developed open space. 

Streamflow must be separated to obtain direct runoff for automatic calibration purposes because the 

L-THIA model, like many hydrologic models, simulates direct runoff. Recently, digital filtering 

methods have been widely used for hydrograph separation [30–33]. Streamflow data were obtained 

from USGS streamflow gauging stations, and each USGS streamflow gauging station name of the 

study watersheds is listed in Table 3. The streamflow was separated to obtain direct runoff using the 

Web-based Hydrograph Analysis Tool (WHAT) with the digital BFLOW filter method [31,33,34]. 

Daily precipitation data were obtained from the National Climatic Data Center (NCDC) for the  

169 stations operated currently within Indiana. Using location information of NCDC stations, Thiessen 

polygons were generated. Therefore, various precipitation patterns were considered in model 

application. Weather stations used for each watershed are listed in Table 3. 

3.2. L-THIA Application 

SCS-CN values for each weather station were generated by overlaying land use, hydrologic soil 

group layers, and Thiessen layers in GIS grid format using the ArcView 3.3 software [35]. The layer of 

SCS-CN values was clipped for each study watershed, and input files for L-THIA were generated 

using the clipped SCS-CN layer. Although the calibration tool for L-THIA was developed to optimize 

parameters on a daily, monthly, or yearly basis, monthly optimization was adopted because the  

L-THIA model does not consider routing processes. However, L-THIA simulates runoff on a  

daily basis. Calibration and validation processes were performed during 1996–2005. Simulation 

performance was tested by calculating the average error (AE), relative error (RE), root mean square 

error (RMSE), and Nash-Sutcliffe (NS). The NS coefficient was used as the objective function for 

optimization. The Nash-Sutcliffe coefficient is commonly used for evaluating hydrological simulation 

performance. These are defined as follows [36–38]: 

, ,
1

n

sim i obs i
i

Q Q
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n
=

−
=
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where, Qobs is the observed monthly direct runoff; Qsim is the simulated monthly direct runoff;  

and 
_

Q obs is average monthly observed direct runoff. If the simulated and observed values are the same, 

AE, RE, and RMSE are 0 and NS is 1.0.  

3.3. Baseline Simulations with SWAT Default Values 

L-THIA employed the default SCS-CN values from the Soil and Water Assessment Tool (SWAT) 

and was applied to 14 calibration and validation watersheds for evaluating simulation performance of 

default SCS-CN values. Because NLCD 2001 land use type for urban area is divided into developed 

high, medium, and low density, and open space according to the range of impervious area, default 

SCS-CN values from SWAT were selected considering the default impervious area for each land use 

type from the SWAT database. The SWAT default SCS-CN values for NLCD 2001 land use type are 

listed in Table 4. 

Table 4. Soil and Water Assessment Tool (SWAT) default SCS-CN value for National 

Land Cover Data (NLCD) 2001 land use type.  

NLCD 2001 land use type 
Hydrologic soil group 

Land use type 
A B C D 

Developed-high density (80%–100%) 87 92 94 95 Industrial (84%) 
Developed-medium density (50%–79%) 71 82 88 90 Residential-high density (60%) 

Developed-low density (20%–49%) 56 74 82 86 Residential-medium density (38%) 
Developed-open space 35 62 74 80 Residential-low density (12%) 

Crop 67 78 85 89 Agricultural Land-Low Crop 
Pasture & grass 49 69 79 84 Pasture 

Forest 35 62 74 80 Forest-Mixed 

3.4. SCS-CN Parameters Regionalization Methods 

The process of transferring parameters from neighboring watersheds to the watershed of interest is 

generally referred to as regionalization [39]. Seven methods were used for regionalizing SCS-CN 

values: average (method 1), land use area weighted average (method 2), hydrologic soil group area 

weighted average (method 3), area combined land use and hydrologic soil group weighted average 

(method 4), spatial nearest neighbor (method 5), inverse distance weighted average (method 6), and 

global calibration method (method 7). 

The method 1 regionalizes SCS-CN values using the arithmetic average of SCS-CN for each land 

use and soil type and total 5 day rainfall for classifying soil moisture condition. This method assumes 

the influence of SCS-CN values which represent both minor and major watershed areas is the same on 

regionalization of CN values. Methods 2–4 which are area weighted average methods including land 

use, hydrologic soil group, and combination of land use and hydrologic soil group factors assume that 
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calibrated SCS-CN values from major areas are more accurate than those from minor areas. Total  

5-day rainfall for AMC adjustment was generated by arithmetic mean because these parameters are not 

allocated to land use or hydrologic soil group or the combination of both in the SCS-CN method. 

Regionalized SCS-CN values in methods 2–4 were generated with the following equation: 

%

%
local local

region
local

CN A
CN

A

×
= 


 (10)

where, CNregion is regionalized SCS-CN value for combination of land use and hydrologic soil group; 

CNlocal is locally calibrated SCS-CN value for combination of both; %Alocal is area percentage of each 

calibration watershed for each factor. 

Methods 5 and 6 assume that the calibrated SCS-CN values from closer watersheds are more 

appropriate for ungauged watershed simulation. The regionalized SCS-CN values were directly 

obtained from the first and second nearest watersheds from the validation watersheds with method 6, 

and validation results between the first and second nearest watershed were compared. Inverse distance 

was used for the weighing factor in method 5 because of the assumption of this method. Regionalized 

SCS-CN values were achieved from the following equation: 

local watershed
region

watershed

CN D
CN

D

×
= 


 (11)

where, Dwatershed is distance between calibrated and validated watershed centroids. 

The global calibration method attempts to obtain the best possible calibration for all calibration sites 

combined rather than for each site. The SCE-UA optimization method obtains one SCS-CN parameter 

set for the best fit to the eight calibration watersheds. The global objective function is calculated from 

individual objective functions for calibration watersheds as follows: 

2

1

1 m

global ind
i

NS NS
m =

=   (12)

where, NSglobal is the global objective function; m is total number of calibration sites; NSind is individual 

objective function. 

Methods 1 and 7 generate one set of SCS-CN parameters for regionalizing Indianan, and other 

methods generate a different set of SCS-CN parameters for each validated watershed. Methods 2 and 3, 

which are area weighted methods, generate a spatial interpolation of documented SCS-CN. 

4. Results and Discussion 

4.1. Baseline Simulation Results for SWAT Default SCS-CN Values 

Simulation results for default SCS-CN values in L-THIA are shown in Table 5. The NS values 

ranged from 0.10 to 0.53. The negative AE and RE values for all watersheds indicate that the runoff 

results for default SCS-CN values were underestimated compared with observed data. These results 

indicate that the default SCS-CN values may have potential error for estimating direct runoff , and 

SCS-CN parameters may need to be calibrated for more accurate simulation.  
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Table 5. Simulation result for default SCS-CN values. 

WD ID NS AE RE RMSE 

WD#1 0.53 −6.27 −49.12 13.03 
WD#2 0.49 −8.15 −54.57 15.10 
WD#3 0.44 −6.82 −54.32 14.28 
WD#4 0.36 −8.74 −54.94 16.48 
WD#5 0.46 −11.22 −50.11 20.61 
WD#6 0.40 −5.53 −33.63 11.17 
WD#7 0.10 −12.76 −73.63 24.55 
WD#8 0.27 −12.55 −60.33 17.48 

4.2. Calibration Results 

The performance of individual watershed calibration shows the calibrated SCS-CN method is able 

to estimate monthly runoff values well with most watersheds achieving NS values above 0.7 (Table 6). 

The global calibration method also shows good agreement with NS values above 0.6 but less than the 

individual watershed calibration results because the global calibration method identified the best model 

fit for all calibration watersheds rather than for each watershed. The highest NS value was obtained for 

watershed WD#1 with a NS value of 0.81 for individual calibration and for WD#8 with 0.76 for global 

calibration. These watersheds are a representative large row crop watershed with 80% of its area in 

row crops and an urban watershed with 96% of its area in urban, respectively.  

Table 6. Individual and global calibration performance of SCS-CN method based on 

monthly results. 

WD ID Individual Global WD ID Individual Global 

WD#1 0.81 0.60 WD#5 0.74 0.64 
WD#2 0.76 0.75 WD#6 0.65 0.51 
WD#3 0.71 0.68 WD#7 0.49 0.38 
WD#4 0.70 0.67 WD#8 0.79 0.76 

4.3. Comparison of Regionalization Methods 

The performance of the regionalization methods on SCS-CN parameters are statistically and 

graphically shown in Table 7 and Figure 3, respectively. Both methods 1 and 6 provide the poorest 

runoff simulations compared to other methods with 0.48 average NS value (Table 7). Results for 

methods 2–4 ranged from 0.48 to 0.50 for average NS values but were not significantly different than 

results for methods 1 and 6. Method 6 obtained the best runoff simulation with 0.58 average NS value 

but had high standard deviation, and the global calibration method followed with 0.57 average NS value. 

Table 8 shows the statistical analysis of one-paired t-test for NS values of validation watersheds to 

identify methods statistically different from other methods. All regionalization methods in this study 

are significantly different from simulation results for default SCS-CN values at an α = 0.01 level. This 

indicates the methods in this study statistically improve accuracy of runoff simulation for ungauged 

watersheds. Although method 6 showed the highest NS value for WD#9, among all regionalization 

methods except the method 7, there were not significant differences with each other. Statistically, 
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method 7 is not significantly different than method 6, but it is significantly different than other 

regionalization methods at an α = 0.05 level. It indicates that method 7 is statistically more accurate for 

surface runoff simulation of ungauged watershed than other methods. The scatter plot for observed vs. 

default and observed vs. method 7 also illustrated the enhancement of simulation performance (Figure 4). 

Table 7. Validation performance for regional calibration methods.  

Methods 
Validation watershed # 

#9 #10 #11 #12 #13 #14 Mean STD 

Method 1 0.43 0.41 0.55 0.46 0.44 0.57 0.48 0.09 
Method 2 0.43 0.44 0.55 0.48 0.40 0.61 0.48 0.07 
Method 3 0.49 0.41 0.60 0.47 0.42 0.59 0.50 0.08 
Method 4 0.49 0.43 0.60 0.48 0.40 0.61 0.50 0.08 
Method 5 0.49 0.40 0.60 0.44 0.47 0.57 0.48 0.09 
Method 6 0.75 0.43 0.66 0.49 0.52 0.66 0.58 0.13 
Method 7 0.60 0.53 0.71 0.56 0.49 0.62 0.57 0.08 

Figure 3. Cumulative monthly flow for validation by regionalizing SCS-CN methods. 

 

Methods 2–4 are good methods because the parameters representing greater watershed area are 

more sensitive within the objective function and can produce more accurate parameters compared to 

those representing less area, but have a limitation for regionalization of SCS-CN parameters. Although 

SCS-CN values are well regionalized with the area weighted calculation, regionalization of total 5-day 

rainfall for AMC adjustment is calculated with an arithmetic average. If there are extraordinary values 
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of these parameters among the calibrated watersheds, sometimes, regionalized total 5-day rainfall for 

AMC adjustment can be strongly influenced. 

Table 8. One paired t-test analysis for regionalization methods.  

Methods 
Arithmetic 

mean 

Area weighted Distance 
weighted 

Nearest 
Global 

calibration Land use Soil Both 

Default 0.001 * 0.001 * 0.001 * 0.001 * 0.001 * 0.001 * 0.001 * 
Method 1  0.507 0.167 0.146 0.303 0.093 0.008 * 
Method 2   0.482 0.233 0.735 0.141 0.022 ** 
Method 3    0.456 0.797 0.105 0.003 * 
Method 4     0.659 0.143 0.009 * 
Method 5      0.074 0.045 * 
Method 6       0.935 
Method 7        

Notes: * Significant at α = 0.01 level; ** Significant at α = 0.05 level.  

Figure 4. 1:1 Scatter plot of the simulated results by default, global calibrated parameters. 

 

Method 6 is a widely used approach for simulation of ungauged watersheds. In this study, it is one 

of the methods which provided the highest and lowest NS values for WD#12 and WD#13, respectively 

(Table 7). Among the six validation watersheds, in three cases method 6 (WD#9, 13, and 14) obtained 

higher NS values than method 7. Among these three cases, one case for WD#14 is adjacent to 

calibration for watershed WD#4. However, method 6 for WD#10 which is the greatest distance for 

method 6 had the most different NS value with method 7. Figure 4 shows graphically the order of best 

fit NS values for methods 6 and 7 of six validated watersheds. One of the strengths of method 6 is 

characteristics of the calibration watershed might be similar with those of an ungauged watershed if the 

distance between two watersheds is close. However, if the distance is far, sometimes, the similarity of 

characteristics between two watersheds might differ significantly, and calibrated parameters are 

improper for simulation of the ungauged watershed. These characteristics of method 6 illustrate high 

variance of NS values in Figure 5 and Table 7. 
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Figure 5. Comparison of validated Nash-Sutcliffe (NS) values by the best fit order 

between methods 6 and 7. 

 

In this study, statistical and graphical results support that method 7 is the best way for regionalizing 

SCS-CN parameters among the methods in this study. High average NS values for method 7 illustrate 

that this method can well simulate surface runoff for ungauged watershed (Table 7). This was the only 

method for which the results were statistically different than other methods (Table 8). The validation 

NS values for method 7 also imply that simulation results for this method are more accurate, moderate 

and stable than other methods (Figure 5). A major advantage of this method is that the regionalized 

parameter is optimized by the response of the objective function calculated for all calibration watersheds.  

4.4. Regionalized SCS-CN Parameters for Indiana 

Regionalized SCS-CN parameters obtained from method 7 and land use characteristics are 

illustrated in Table 9 and Figure 6. The developed high density, medium density, low density, and 

open space in this study have the characteristics of “impervious area (paved parking lots, roofs, and 

driveways, etc.)”, “residential districts with 65% impervious area (average 1/8 acre or less lot size; 

town house)”, “residential districts with 25% impervious area (average 1/2 acre lot size)”, and  

“open space (lawns, parks, golf course, cemeteries, etc.) with poor condition (grass cover < 50%)”, 

respectively [10].  

The row crop area in this study area has hydrologic characteristics for “row crops with straight row 

treatment and good hydraulic condition which is including density and canopy of vegetative area, 

amount of year-round cover, amount of grass or close-seeded legumes, percent of residue cover on the 

land surface (poor ≤ 20%), and degree of surface roughness” [10]. The pasture/grass land use 

represents the characteristics of “the continuous forage for grazing with less than 50% ground cover or 

heavily grazed with no mulch” [10]. The characteristics of forest in this study were similar to “Forest 

litter, small trees, and brush are destroyed by heavy grazing or regular burning” [10]. 
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Table 9. Regionalized SCS-CN parameters from global calibration method. 

Cover description and AMC 

condition 
Calibrated parameters Hydrologic characteristics 

SCS-CN 

Value 

Developed high density A:93 B:98 C:98 D:98 
Impervious area: paved parking lots, roofs, 

and driveways 
Developed medium density A:80 B:88 C:93 D:96 Industrial—75% of impervious area 

Developed low density A:51 B:73 C:81 D:85 Residential—average lot size: 1/3 acre 
Developed open space A:50 B:64 C:74 D:78 Grass cover—good condition (> 75%) 

Crop A:66 B:79 C:86 D:89 
Row crops with straight row and crop residue 

cover, and poor hydrologic condition 
Pasture/Grass A:53 B:75 C:85 D:91 Continuous forage for grazing—poor * 

Wood A:48 B:66 C:78 D:84 Wood—poor ** 

Total  

5-day 

rainfall 

(mm) 

AMCI Less than 0.08 
Dormant season AMC II 0.08–0.69 

AMC III Over 0.69 
AMCI Less than 17.12 

Growing season AMC II 17.12–53.16 
AMC III Over 53.16 

Notes: * Less than 50% ground cover or heavily grazed with no mulch; ** Forest litter, small trees, and brush 

are destroyed by heavy grazing or regular burning. 

Figure 6. Regionalized SCS-CN value for combination of land use and hydrologic soil 

group from global calibration method. 

 

Regionalized total 5-day rainfall for AMC adjustment also illustrated that hydrologic condition of 

calibrated watersheds is poor so we can assumed that infiltration is impaired and runoff tends to 

increase. During the growing season, soil moisture condition shifts from dry to moderate condition 

with 17.2 mm for total 5-day rainfall (Table 8). Soil moisture condition of watersheds indicated wet 

conditions during the dormant season. Indiana is located at north part of USA and snow pack and 

frozen soil might occur. Especially, high surface runoff during snow melt might occur and 
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significantly influence optimizing total 5-day rainfall for AMC adjustment during the dormant season. 

Ficklin and Zhang [40] compared the daily surface runoff of a highly agricultural watershed with 

uncalibrated SCS-CN and Green-Ampt models and reported the SCS-CN model is slightly better than 

the Green-Ampt model. However, default SCS-CN parameters from SWAT resulted in simulated 

results that are significantly lower than the observed surface direct runoff in Indiana as shown in 

Figure 4. Although SCS-CN parameters were regionalized by method 7, yearly validation results were 

still slightly underestimated (Figure 4). Therefore, the applicability of the uncalibrated SCS-CN model 

needs to be evaluated for various watershed conditions. Grimaldi et al. [41] reported most net rainfall 

intensity values used in the SCS-CN method are underestimated for small watersheds in Texas, USA, 

because Ia is constant during the event so it is not related to the infiltration properties of the soil. This 

may be one reason why the simulated direct runoff by the SCS-CN method is underestimated. 

The SCS-CN method has been widely used to estimate surface runoff during several decades and 

extended to hydrologic models for generating hydrographs. However, the SCS-CN method can have 

significantly large errors in simulating stream flow using hydrologic models and in hourly or  

sub-hourly temporal resolution of the net rainstorm hyetograph due to the misconception of the  

SCS-CN method [42,43]. The SCS-CN method as an infiltration model has significant errors in 

simulating peak discharge predictions [40]. Some researchers reported the SCS-CN method has a 

tendency to underestimate the net rainfall at the beginning of the storm and overestimate it at the  

end [44,45]. In this study, the methods of regionalizing SCS-CN values for application to ungauged 

basins were evaluated for Indiana USA. However, when using regionalized SCS-CN values, the 

modeler should use these carefully, fully understanding the approach and limitations.  

5. Conclusions 

Selection of SCS-CN values for ungauged watersheds to simulate surface runoff is a challenge. 

Seven regionalization methods for estimating SCS-CN values were investigated: (1) average; (2) land 

use area weighted average; (3) hydrologic soil group area weighted average; (4) area combined land 

use and hydrologic soil group weighted average; (5) spatial nearest neighbor; (6) inverse distance 

weighted average; and (7) global calibration. They were applied and evaluated with application in  

14 watersheds. Eight watersheds were used to calibrate SCS-CN values and six watersheds were used 

to validate values. All the regionalization method results were statistically different than results for 

default SCS-CN values, indicating that calibration of SCS-CN values was needed to obtain accurate 

simulation results. The spatial nearest neighbor method provided the highest NS value of 0.58. 

However, the six NS values for spatial nearest neighbor method included the highest and lowest NS 

values obtained compared to NS values of other methods. The variance of NS values for the spatial 

nearest neighbor method is also the highest compared to those of other methods. The results of this 

method are not statistically different than other methods at the α = 0.05 level. We can conclude that the 

spatial nearest neighbor method could generate good results for estimating runoff from ungauged 

watersheds when watershed characteristics of gauged and ungauged watersheds are similar but might 

have potential errors when characteristics are significantly different. The average NS value for six 

ungauged watersheds with the global calibration method provided the second highest NS of 0.56 with 

smaller standard deviation. As a result of statistical analyses, the results from the global calibration 
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method were significantly different than results for other methods at α = 0.05, except for those for the 

spatial nearest neighbor method. Therefore, the global calibration method is recommended for generating 

regionalized SCS-CN parameters for simulation of runoff from ungauged watersheds and regionalized 

SCS-CN parameters through this study could be used in Indiana as regionalized SCS-CN values. 
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